Рубцовский индустриальный институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

И.о. декана ТФ Ю.В. Казанцева

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.О.19 «Физика в машиностроении»

Код и наименование направления подготовки (специальности): 23.03.02

Наземные транспортно-технологические комплексы

Направленность (профиль, специализация): **Проектирование колесных и гусеничных машин**

Статус дисциплины: обязательная часть

Форма обучения: заочная

Статус	Должность	И.О. Фамилия
Разработал		С.А. Гончаров
	Зав. кафедрой «ЭЭ»	С.А. Гончаров
Согласовал	руководитель направленности	И.В. Курсов
	(профиля) программы	

г. Рубцовск

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
ОПК-1	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	ОПК-1.2	Применяет естественнонаучные и/или общеинженерные знания для решения задач профессиональной деятельности
ОПК-3	Способен в сфере своей профессиональной деятельности проводить измерения и	ОПК-3.1	Способен проводить измерения и наблюдения в сфере профессиональной деятельности
OHK-3	наблюдения, обрабатывать и представлять экспериментальные данные и результаты испытаний	ОПК-3.2	Обрабатывает и представляет экспериментальные данные и результаты испытаний

2. Место дисциплины в структуре образовательной программы

Дисциплины (пр	рактики),	Математика для инженерных расчетов
предшествующие	изучению	
дисциплины, ре	зультаты	
освоения которых нео	бходимы	
для освоения	данной	
дисциплины.		
Дисциплины (практик	и), для	Материаловедение, Электротехника и электроника
которых результаты	освоения	
данной дисциплины	будут	
необходимы, как	входные	
знания, умения и владе	ния для	
их изучения.		

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 8 / 288

	Виды занятий, их трудоемкость (час.)				Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельна я работа	работы обучающегося с преподавателем (час)
заочная	12	8	10	258	40

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 2

Объем дисциплины в семестре з.е. /час: 3 / 108

Форма промежуточной аттестации: Зачет

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные Практические работы занятия		Самостоятельная работа	обучающегося с преподавателем (час)
6	4	6	92	20

Лекционные занятия (6ч.)

- **1. Введение {беседа} (1ч.)[4,5,8,9]** Физика как наука. Применения физики в машиностроении. Применение естественнонаучных знаний для решения задач профессиональной деятельности. Проведение измерений и наблюдений в сфере профессиональной деятельности. Обработка и представление экспериментальных данных и результатов испытаний
- 2. Механика. {лекция с разбором конкретных ситуаций} (1ч.)[4,5] Система отсчёта. Траектория материальной точки. Скорость. Ускорение и его составляющие. Угловая скорость и угловое ускорение. Закон Ньютона. Масса и сила. Импульс, импульс силы, закон сохранения импульса. Момент силы. Основной закон динамики вращательного движения. Момент инерции и его определение. Момент импульса и закон его сохранения. Энергия, работа, мощность. Кинетическая и потенциальная энергии. Закон сохранения энергии.
- 3. Молекулярная физика и термодинамика. {лекция с разбором конкретных ситуаций} (2ч.)[4,5,8] Газовые законы идеального газа. Уравнение Клапейрона-Менделеева. Основное уравнение молекулярно-кинетической теории. Распределение Максвелла молекул по скоростям. Явления переноса. Внутренняя энергия газа. Теплота и теплоемкость. Работа газа. Первое начало термодинамики. Адиабатический процесс. Круговой процесс. Обратимые и необратимые процессы. Второе начало термодинамики. Цикл Карно и его КПД для идеального газа. Энтропия.
- 4. Электростатика и постоянный ток. {лекция с разбором конкретных ситуаций} (2ч.)[4,5,9] Электрические заряды. Закон Кулона. Напряженность и поток вектора напряженности в электрическом поле. Теорема Гаусса и её применение. Потенциал электрического поля и его связь с напряженностью. Поляризация диэлектриков. Электроемкость проводников. Конденсаторы. Энергия электрического поля. Электрический ток и его характеристики. Электродвижущая сила. Разность потенциалов и напряжение. Электрическое сопротивление при последовательном и параллельном соединениях. Закон Ома для участка и полной цепи. Работа и мощность тока. Законы Кирхгофа. Токи в средах.

Практические занятия (6ч.)

1. Механика. {тренинг} (2ч.)[5,6,7] Система отсчёта. Траектория материальной

- точки. Скорость. Ускорение и его составляющие. Угловая скорость и угловое ускорение. Закон Ньютона. Масса и сила. Импульс, импульс силы, закон сохранения импульса. Момент силы. Основной закон динамики вращательного движения. Момент инерции и его определение. Момент импульса и закон его сохранения. Энергия, работа, мощность. Кинетическая и потенциальная энергии. Закон сохранения энергии.
- 2. Молекулярная физика и термодинамика {тренинг} (2ч.)[4,6,7] Газовые законы идеального газа. Уравнение Клапейрона-Менделеева. Основное уравнение молекулярно-кинетической теории. Распределение Максвелла молекул по скоростям. Явления переноса. Внутренняя энергия газа. Теплота и теплоемкость. Работа газа. Первое начало термодинамики. Адиабатический процесс. Круговой процесс. Обратимые и необратимые процессы. Второе начало термодинамики. Цикл Карно и его КПД для идеального газа. Энтропия.
- 3. Электростатика и постоянный ток {тренинг} (2ч.)[5,6,7] Электрические заряды. Закон Кулона. Напряженность и поток вектора напряженности в электрическом поле. Теорема Гаусса и её применение. Потенциал электрического поля и его связь с напряженностью. Поляризация диэлектриков. Электроемкость проводников. Конденсаторы. Энергия электрического поля. Электрический ток и его характеристики. Электродвижущая сила. Разность потенциалов и напряжение. Электрическое сопротивление при последовательном и параллельном соединениях. Закон Ома для участка и полной цепи. Работа и мощность тока. Законы Кирхгофа. Токи в средах.

Лабораторные работы (4ч.)

1. Определение ускорения свободного падения тел с помощью оборотного маятника. {работа в малых группах} (4ч.)[1,2] Изучение свойств физического маятника, их применение для определения ускорения свободного падения.

Самостоятельная работа (92ч.)

- 1. Проработка теоретического материала (работа с конспектом лекций, **учебником**, учебными пособиями)(10ч.)[1,4,5,8,9] Кинематика. Динамика материальной Виды точки. сил В механике Работа энергия. Динамика вращения твёрдого тела Механика жидкостей газов. Элементы релятивистской механики колебания. Механические Волновые процессы Молекулярно-кинетическая теория идеальных газов. Основы термодинамики. Электростатическое поле в вакууме, диэлектриках, проводниках. Общие свойства электрического тока. Законы постоянного тока. Электрический ток в средах.
- **2.** Подготовка к практическим занятиям.(6ч.)[1,6,7] Механика. Механические колебания и волны. Молекулярная физика и термодинамика. Электростатика. Постоянный электрический ток.
- **3.** Подготовка к лабораторным занятиям, включая подготовку к защите работ(4ч.)[1,2] Определение ускорения свободного падения тел с помощью

оборотного маятника.

- **4.** Выполнение индивидуального домашнего задания (контрольной работы) (30ч.)[1,4,5,8,9] Механика. Механические колебания и волны. Молекулярная физика и термодинамика. Электростатика. Постоянный электрический ток.
- **5.** Самостоятельное изучение разделов дисциплины.(38ч.)[1,4,5,8,9] Механика. Механические колебания и волны. Молекулярная физика и термодинамика. Электростатика. Постоянный электрический ток.
- **6. Подготовка к зачету(4ч.)[1,4,5,6,7,8,9]** Механика. Механические колебания и волны. Молекулярная физика и термодинамика. Электростатика. Постоянный электрический ток.

Семестр: 3

Объем дисциплины в семестре з.е. /час: 5 / 180 Форма промежуточной аттестации: Экзамен

Виды занятий, их трудоемкость (час.)				Объем контактной работы
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
6	4	4	166	20

Лекционные занятия (6ч.)

- 1. Электромагнетизм. {лекция с разбором конкретных ситуаций} (2ч.)[4,5] Магнитная индукция. Закон Ампера. Закон Био-Савара-Лапласа и его применение. Сила Лоренца. Виды магнетиков. Закон полного тока. Явление электромагнитной индукции. Закон Фарадея для ЭДС индукции. Самоиндукция и взаимоиндукция. Энергия магнитного поля. Колебательный контур. Формула Томсона. Образование электромагнитных волн.
- 2. Волновая оптика. Квантовая оптика. {лекция с разбором конкретных ситуаций} (2ч.)[4,5] Интерференция света. Интерференция в тонких пленках. Применение интерференции света. Дифракция от сферического и плоского фронтов волны. Поляризация света при отражении и в анизотропных средах. Анализ поляризованного света. Тепловое излучение. Абсолютно черное тело. Законы теплового излучения. Виды фотоэффекта. Законы Столетова для фотоэффекта. Формула Эйнштейна для внешнего фотоэффекта. Давление света. Эффект Комптона.
- 3. Атомная и ядерная физика. {лекция с разбором конкретных ситуаций} (2ч.) [4,5] Спектры излучения водородоподобных атомов. Постулаты Бора. Теория атома водорода по Бору. Элементы квантовой механики. Квантовые числа и их физический смысл. Принцип Паули и таблица химических элементов Менделеева. Протонно-нейтронная структура ядер атома. Закон радиоактивного распада. Энергия связи ядер. Реакция деления ядер. Термоядерные реакции синтеза атомных ядер.

Практические занятия (4ч.)

- **1.** Электромагнетизм. {тренинг} (2ч.)[1,5,6] Магнитное поле токов. Сила Ампера. Сила Лоренца. Закон полного тока. Электромагнитная индукция. Самоиндукция. Движение зарядов в электрических и магнитных полях.
- **2.** Оптика, атомная и ядерная физика. {тренинг} (2ч.)[1,4,7] Интерференция и дифракция света. Квантовая физика. Радиоактивность. Закон радиоактивного распада.

Лабораторные работы (4ч.)

1. Определение индуктивности катушки. {работа в малых группах} (4ч.)[1,3] Изучение явления самоиндукции. Сопротивление при переменном токе. Измерение индуктивности катушки.

Самостоятельная работа (166ч.)

- 1. Проработка теоретического материала (работа с конспектом лекций, учебником, учебными пособиями).(40ч.)[1,4,5,8,9] Электромагнетизм. Волновая оптика. Квантовая оптика. Атомная и ядерная физика.
- **2. Подготовка к практическим занятиям.**(4ч.)[1,5,7] Магнитное поле токов. Сила Ампера. Сила Лоренца. Закон полного тока. Электромагнитная индукция. Самоиндукция. Движение зарядов в электрических и магнитных полях. Интерференция и дифракция света. Квантовая физика. Радиоактивность. Закон радиоактивного распада
- **3.** Подготовка к лабораторным занятиям, включая подготовку к защите работ.(4ч.)[3,5] Определение индуктивности катушки.
- **4. Выполнение индивидуального домашнего задания (контрольной работы) (45ч.)[1,4,5,8,9]** Магнитное поле токов. Сила Ампера. Сила Лоренца. Закон полного тока. Электромагнитная индукция. Самоиндукция. Движение зарядов в электрических и магнитных полях Интерференция и дифракция света. Квантовая физика. Радиоактивность. Закон радиоактивного распада.
- **5.** Самостоятельное изучение разделов дисциплины. (64ч.) [4,5,8,9] Магнитное поле токов. Сила Ампера. Сила Лоренца. Закон полного тока. Электромагнитная индукция. Самоиндукция. Движение зарядов в электрических и магнитных полях. Интерференция и дифракция света. Квантовая физика. Радиоактивность. Закон радиоактивного распада
- **6. Подготовка к экзамену(9ч.)**[1,4,5,6,7,8,9] Магнитное поле токов. Сила Ампера. Сила Лоренца. Закон полного тока. Электромагнитная индукция. Самоиндукция. Движение зарядов в электрических и магнитных полях. Интерференция и дифракция света. Квантовая физика. Радиоактивность. Закон радиоактивного распада

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронной информационно-образовательной среде АлтГТУ:

- 1. Бахмат, В.И. Физика: [текст] метод. пособие и контр. задания для студентов -заочников строительных специальностей/ В.И. Бахмат. Рубцовск: РИО АлтГТУ, 2013. 80 с. (22 экз.)
- 2. Бахмат, В.И. Механика и молекулярная физика: метод. указания к выполнению лаборатор. работ по физике для студентов всех форм обучения техн. направлений/ В.И. Бахмат, В.В. Борисовский. Рубцовск: РИО, 2015. 39 с. URL: https://edu.rubinst.ru/resources/books/Bakhmat_V.I._Mekhanika_i_molekulyarnaya_phi zika (lab.rab) 2015.pdf (дата обращения 15.03. 2023)
- 3. Бахмат, В.И. Электричество и магнетизм:метод. указания к лаборатор. работам по физике для студентов техн. направлений всех форм обучения/ В.И. Бахмат, В.В. Борисовский. Рубцовск: РИО, 2015. 27 с. URL: https://edu.rubinst.ru/resources/books/Bakhmat_V.I._Yelektrichestvo_i_magnetizm_201 5.pdf (дата обращения 15.03. 2023)

6. Перечень учебной литературы

- 6.1. Основная литература
- 4. Краткий курс общей физики : учебное пособие / И. А. Старостина, Е. В. Бурдова, О. И. Кондратьева [и др.] ; под редакцией Л. Г. Шевчук. Казань : Казанский национальный исследовательский технологический университет, 2014. 376 с. ISBN 978-5-7882-1691-1. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/63716..html (дата обращения: 15.03.2023). Режим доступа: для авторизир. пользователей
- 5. Курс физики : учебное пособие / А. Н. Ларионов, Ю. И. Кураков, В. С. Воищев [и др.]. Воронеж : Воронежский Государственный Аграрный Университет им. Императора Петра Первого, 2016. 203 с. ISBN 978-5-7267-0929-1. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/72682.html (дата обращения: 15.03.2023). Режим доступа: для авторизир. пользователей

6.2. Дополнительная литература

- 6. Кузьмичева, В. А. Практикум по общей физике : учебное пособие / В. А. Кузьмичева. Москва : Московская государственная академия водного транспорта, 2019. 233 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/97319.html (дата обращения: 15.03.2023). Режим доступа: для авторизир. пользователей
 - 7. Пискарёва, Т. И. Сборник задач по общему курсу физики : учебное

пособие / Т. И. Пискарёва, А. А. Чакак. — Оренбург : Оренбургский государственный университет, ЭБС АСВ, 2016. — 131 с. — ISBN 978-5-7410-1500-1. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/69942..html (дата обращения: 15.03.2023). — Режим доступа: для авторизир. пользователей

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 8. Научный электронный журнал «Ученые записки физического факультета московского университета» http://uzmu.phys.msu.ru
- 9. Научно-технический журнал «Успехи прикладной физики» https://advance.orion-ir.ru

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям $\Phi \Gamma OC$, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение		
1	LibreOffice		
2	Windows		
3	Антивирус Kaspersky		

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным		
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные		
	интернет-ресурсы (http://Window.edu.ru)		
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к		
	фондам российских библиотек. Содержит коллекции оцифрованных документов		
	(как открытого доступа, так и ограниченных авторским правом), а также каталог		
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)		

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы учебные аудитории для проведения учебных занятий помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».