Рубцовский индустриальный институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

И.о. декана ТФ Ю.В. Казанцева

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.О.15** «Инженерная графика»

Код и наименование направления подготовки (специальности): **09.03.01 Информатика и вычислительная техника**

Направленность (профиль, специализация): **Технологии разработки** программного обеспечения

Статус дисциплины: обязательная часть

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	преподаватель	М.С. Скоробогатов
	Зав. кафедрой «ПМ»	Л.А. Попова
Согласовал	руководитель направленности	Л.А. Попова
	(профиля) программы	

г. Рубцовск

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
ОПК-1	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	ОПК-1.2	Применяет естественнонаучные и/или общеинженерные знания для решения задач
	Способен понимать принципы работы современных информационных технологий и	ОПК-2.1	Выбирает информационные технологии и программные средства, в том числе отечественного производства, при решении задач профессиональной деятельности
ОПК-2	программных средств, в том числе отечественного производства, и использовать их при решении задач профессиональной деятельности	ОПК-2.2	Использует современные информационные технологии и программные средства, в том числе отечественного производства, при решении задач профессиональной деятельности
ОПК-4	Способен участвовать в разработке стандартов, норм и правил, а также технической документации, связанной с профессиональной деятельностью	ОПК-4.1	Применяет стандарты, нормы, правила, техническую документацию в профессиональной деятельности

2. Место дисциплины в структуре образовательной программы

Дисциплины	(практики),	Аналитическая геометрия, Линейная алгебра и теория	
предшествующие изучению		Программирование Программирование приложений	
1	результаты необходимы		
для освоения дисциплины.	данной		
Дисциплины (прак которых результать данной дисципли необходимы, ка знания, умения и влих изучения.	ны будут к входные	Геометрическое моделирование, Преддипломная практика, Технологическая (проектно-технологическая) практика	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 4 / 144

Форма промежуточной аттестации: Зачет

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторны е работы	Практические занятия	Самостоятельна я работа	работы обучающегося с преподавателем (час)
очная	16	16	16	96	62

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 5

Лекционные занятия (16ч.)

- 1. Введение в инженерную графику(2ч.)[2,3,4] Основные направления. Классификация изображения. Преобразование изображений из одного класса в другой. Виды устройств визуального отображения. Представление видеоинформации и ее машинная генерация. Цветовые модели и палитра. Кодировка цвета. Аддитивная цветовая модель RGB. Субтрактивная цветовая модель CMYK. Цветовая модель HSV.
- **2.** Математические основы компьютерной графики. {творческое задание} (2ч.)[2,3,4] Однородные координаты точки.Математические основы компьютерной графики. Геометрическое моделирование решаемой задачи, базовые алгоритмы. Создание движущихся изображений.
- **3. Растровые алгоритмы(2ч.)[2,4,5]** Растровые алгоритмы, основные понятия. Общий алгоритм Брезенхейма растрового представления отрезка. Растровое представление окружности. Использование окон в машинной графике.
- **4. Алгоритм заполнения заданной области(2ч.)[2,3,4]** Алгоритмы заполнения не выпуклого многоугольника, заданного своими вершинами и ребрами. Тест на принадлежность данной точки многоугольнику. Алгоритмы разрезания и обработки геометрических объектов, заполнение областей в форме многоугольника. Алгоритм заливки произвольной области с затравкой.
- **5. Аффинные преобразования(2ч.)[2,4,5]** Аффинные преобразования на плоскости. Аффинные преобразования в пространстве.
- **6. Виды проектирования(2ч.)[2,4]** Параллельное проектирование. Перспективное проектирование. Особенности проекций гладких отображений.
- 7. Алгоритмы удаление невидимых частей геометрического объекта.(2ч.)[2,4,5] Постановка задачи и подходы к решению. Алгоритмы удаление невидимых ребер и граней многоугольника. Отсечение нелицевых граней у выпуклого многоугольника. Алгоритмы удаления невидимых линий и поверхностей. Постановка задачи и подходы к решению. Алгоритм Варнака. Метод построчного сканирования. Метод двоичного разбиения пространства.

Метод сортировки по глубине. Метод z-буфера. Алгоритм Аппеля. Алгоритм Робертса.

8. Изображение гладких кривых и поверхностей(2ч.)[2,5,6] Сплайн-кривые. Сплайн-функции. Составные бета-сплайновые кривые. Кривые Безье.В-сплайновые кривые.

Сплайн-поверхности. В-сплайновые поверхности. Построение графика функции двух переменных (растровая версия, полутоновые изображения.

Практические занятия (16ч.)

- **1.** Растровые алгоритмы построения плоских фигур.(2ч.)[2,4,7] Применяя естественнонаучные знания основ растровых алгоритмов, построить по заданным параметрам отрезок, окружность, эллипс.
- **2. Алгоритмы заполнения внутренности областей ограниченных контуром.**(**2ч.**)[**2,4,5**] Применяя естественнонаучные знания основ алгоритмов штриховки и заполнения внутренних поверхностей, заполнить многоугольник, заданный своими ребрами и вершинами.

Применяя естественнонаучные знания основ алгоритма заливки области с затравкой, заполнить внутренности окружности и эллипса.

- 3. Аффинные преобразования плоскости(2ч.)[2,4,5] Применяя на естественнонаучные знания основ матричных алгоритмов аффинных преобразований плоскости, рассчитать заданного координаты вершин многоугольника, повернутого и увеличенного относительно заданного центра.
- **4. Аффинные** преобразования в пространстве(2ч.)[2,4,5] Применяя естественнонаучные знания основ матричных алгоритмов аффинных преобразований в пространстве рассчитать координаты вершин заданного многогранника, с использованием матриц вращения, масштабирования, переноса.
- **5.** Параллельное проецирование(2ч.)[2,4,5] Применяя естественнонаучные знания основ матричных алгоритмов проецирование трехмерных объектов на плоскость рассчитать координаты проекции вершин заданного многогранника, с использованием матрицы аксонометрической проекции.
- **6.** Перспективное проецирование.(2ч.)[2,4,5] Применяя естественнонаучные знания основ матричных алгоритмов проецирование трехмерных объектов на плоскость рассчитать координаты перспективной проекции вершин заданного многогранника, с использованием матрицы центрального проецирования.
- **7. Построение сплайнновых кривых(2ч.)[2,4,5]** Применяя естественнонаучные знания основ алгоритмов построение кривых по заданным точкам построить интерполяционный В-сплайн и кривую Безье.
- 8. Решение графиков задач на построение функций двух переменных.(2ч.)[2,4,5] Применяя естественнонаучные знания основ проектирования трехмерной поверхности с помощью построения контурных линий построить трехмерную поверхность по заданному уравнению функции двух переменных.

Лабораторные работы (16ч.)

1. Построение графических примитивов. Элементы деловой графики (диаграммы, гистограммы, графики функций.(2ч.)[2,7,8] Используя современные информационные технологии и программные средства разработать программу, которая по заданному алгоритму строит правильный многоугольник, и по заданному уравнению кривой строит график функции

Применяя стандарты, правила технической документации, составьте отчет о выполнении лабораторной работы с описанием программных средств.

- **2. Растровые алгоритмы.**(2ч.)[2,7,8] Используя современные информационные технологии и программные средства разработать программу, которая по общему алгоритму Брезенхейма строит отрезок и растровое изображение окружности. Применяя стандарты, правила технической документации, составьте отчет о выполнении лабораторной работы с описанием программных средств.
- **3.** Алгоритм заполнения многоугольника, заданного своими вершинами и ребрами(2ч.)[2,7,8] Используя современные информационные технологии и программные средства разработать программу, которая реализует алгоритм заполнения многоугольника, заданного своими вершинами и ребрами Применяя стандарты, правила технической документации, составьте отчет о выполнении лабораторной работы с описанием программных средств.
- **4. Алгоритм заливки замкнутой области с затравкой**(**2ч.**)[**2,7,8**] Используя современные информационные технологии и программные средства разработать программу, которая реализует алгоритм заливки замкнутой области с затравкой. Применяя стандарты, правила технической документации, составьте отчет о выполнении лабораторной работы с описанием программных средств.
- **5. Аффинные преобразования на плоскости(2ч.)[2,7,8]** Используя современные информационные технологии и программные средства разработать программу, которая реализует создания движущихся изображений с использованием аффинных преобразований на плоскости. Применяя стандарты, правила технической документации, составьте отчет о выполнении лабораторной работы с описанием программных средств.
- **6. Реализация алгоритма построения ортографических и аксонометрических проекций Платоновых тел.(2ч.)[2,7,8]** Используя современные информационные технологии и программные средства разработать программу, которая реализует проецирует 3D геометрические объекты на плоскость с использованием алгоритма удаления невидимых линий. Применяя стандарты, правила технической документации, составьте отчет о выполнении лабораторной работы с описанием программных средств.
- 7. Реализация алгоритма рисования кривых(2ч.)[2,7,8] Используя современные информационные технологии и программные средства разработать программу, которая реализует алгоритм рисования кривой Безье и В- сплайнновой кривой. Применяя стандарты, правила технической документации, составьте отчет о выполнении лабораторной работы с описанием программных средств.
- 8. Реализация построения функций двух переменных(2ч.)[1,2,7,8] Используя современные информационные технологии и программные средства разработать

программу, которая реализует алгоритм рисования функций двух переменных с удалением невидимых линий. Применяя стандарты, правила технической документации, составьте отчет о выполнении лабораторной работы с описанием программных средств.

Самостоятельная работа (96ч.)

- **1. Изучение теоретического материала**(16ч.)[2,3,4,5,6] Изучение теоретических основ инженерной графике для формирования навыков применения базовых алгоритмов при решении задач. Изучение основ современных информационных технологий для формирования выбора и использования программных средств, в том числе отечественного производства, при выполнении лабораторных работ.
- **3.** Подготовка к лабораторным работам(32ч.)[1,2,3,4,7,8] Изучение теоретических основ инженерной графике для формирования навыков применения базовых алгоритмов при решении задач. Изучение основ современных информационных технологий для формирования выбора и использования программных средств, в том числе отечественного производства, при выполнении лабораторных работ.
- **4. Подготовка к практическим занятиям(32ч.)[1,2,3,4]** Изучение теоретических основ инженерной графике для формирования навыков применения базовых алгоритмов при решении задач. Изучение основ современных информационных технологий для формирования выбора и использования программных средств, в том числе отечественного производства, при выполнении практических работ.
- 5. Подготовка к зачету(16ч.)[2,4,5,7,8] Повторение материала

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронной информационно-образовательной среде АлтГТУ:

1. Дудник, Е.А. Вычислительная математика: учебное пособие для студентов, обучающихся по направлению «Информатика и вычислительная техника» дневной формы обучения /Е.А. Дудник; Рубцовский индустриальный институт. — Рубцовск: РИИ, 2021. — 74 с. URL: https://edu.rubinst.ru/resources/books/Dudnik_E.A._Vychislitel'naya_matematika_(dlya_IVT)_2021.pdf (дата обращения 01.11.2021)

6. Перечень учебной литературы

- 6.1. Основная литература
- 2. Боресков, А. В. Графика трехмерной компьютерной игры на основе OpenGL: практическое пособие / А. В. Боресков. Москва: Диалог-МИФИ, 2004. 383 с.: табл., схем. Режим доступа: по подписке. URL:

https://biblioclub.ru/index.php?page=book&id=89378 (дата обращения: 18.11.2021). – Библиогр. в кн. – ISBN 5-86404-190-4. – Текст : электронный.

- 3. Компьютерная графика: учебное пособие / Д. В. Горденко, Д. Н. Резеньков, С. В. Сапронов, Н. В. Гербут. Москва: Ай Пи Ар Медиа, 2022. 91 с. ISBN 978-5-4497-1694-1. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/122430.html (дата обращения: 23.06.2022). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/122430
- 4. Перемитина, Т.О. Компьютерная графика : учебное пособие / Т.О. Перемитина ; Томский Государственный университет систем управления и радиоэлектроники (ТУСУР). Томск : Эль Контент, 2012. 144 с. : ил.,табл., схем. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=208688 (дата обращения: 15.03.2021). ISBN 978-5-4332-0077-7. Текст : электронный.

6.2. Дополнительная литература

- 5. Задорожный, А. Г. Введение в трехмерную компьютерную графику с использованием библиотеки OpenGL: учебное пособие: [16+] / А. Г. Задорожный, М. Г. Персова, Ю. И. Кошкина. Новосибирск: Новосибирский государственный технический университет, 2018. 100 с.: ил., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=575673 (дата обращения: 27.12.2021). Библиогр. в кн. ISBN 978-5-7782-3744-5. Текст: электронный.
- 6. Ваншина, Е. Компьютерная графика : практикум / Е. Ваншина, Н. Северюхина, С. Хазова ; Оренбургский государственный университет. Оренбург : Оренбургский государственный университет, 2014. 98 с. : ил., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=259364 (дата обращения: 18.11.2021). Библиогр. в кн. Текст : электронный.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 7. Компьютерная графика /теория, алгоритмы, примеры на C++ и OpenGL http://compgraphics.info/
- 8. Лаборатория компьютерной графике при ВМиК МГУ http://rsdn.ru/article/opengl/ogltut2.xml

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационно-образовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение
1	LibreOffice
1	Dev-C++
2	Free Pascal
2	Windows
3	Lazarus
3	Антивирус Kaspersky
5	Python
8	Яндекс.Браузер
9	7-Zip

№пп	Используемые профессиональные базы данных и информационные	
	справочные системы	
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным	
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные	
	интернет-ресурсы (http://Window.edu.ru)	
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к	
	фондам российских библиотек. Содержит коллекции оцифрованных документов	
	(как открытого доступа, так и ограниченных авторским правом), а также каталог	
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)	

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения учебных занятий
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».